Emergent adaptive behaviour of GRN-controlled simulated robots in a changing environment
نویسندگان
چکیده
We developed a bio-inspired robot controller combining an artificial genome with an agent-based control system. The genome encodes a gene regulatory network (GRN) that is switched on by environmental cues and, following the rules of transcriptional regulation, provides output signals to actuators. Whereas the genome represents the full encoding of the transcriptional network, the agent-based system mimics the active regulatory network and signal transduction system also present in naturally occurring biological systems. Using such a design that separates the static from the conditionally active part of the gene regulatory network contributes to a better general adaptive behaviour. Here, we have explored the potential of our platform with respect to the evolution of adaptive behaviour, such as preying when food becomes scarce, in a complex and changing environment and show through simulations of swarm robots in an A-life environment that evolution of collective behaviour likely can be attributed to bio-inspired evolutionary processes acting at different levels, from the gene and the genome to the individual robot and robot population.
منابع مشابه
Improving the Adaptability of Simulated Evolutionary Swarm Robots in Dynamically Changing Environments
One of the important challenges in the field of evolutionary robotics is the development of systems that can adapt to a changing environment. However, the ability to adapt to unknown and fluctuating environments is not straightforward. Here, we explore the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial ...
متن کاملAdaptive Self-Organizing Organisms Using A Bio- Inspired Gene Regulatory Network Controller: For the Aggregation of Evolutionary Robots under a Changing Environment
This work has explored the adaptive potential of simulated swarm robots that contain a genomic encoding of a bio-inspired gene regulatory network (GRN). An artificial genome is combined with a flexible agent-based system, representing the activated part of the regulatory network that transduces environmental cues into phenotypic behavior. Using an Alife simulation framework that mimics a changi...
متن کاملControlling development and chemotaxis of soft-bodied multicellular animats with the same gene regulatory network
The ability to actively forage for resources is one of the defining properties of animals, and can be seen as a form of minimal cognition. In this paper we model soft-bodied robots, or “animats”, which are able to swim in a simulated twodimensional fluid environment toward food particles emitting a diffusive chemical signal. Both the multicellular development and behaviour of the animats are co...
متن کاملEmergent Behaviour Evolution in Collective Autonomous Mobile Robots
This paper deals with genetic algorithm based methods for finding optimal structure for a neural network (weights and biases) and for a fuzzy controller (rule set) to control a group of mobile autonomous robots. We have implemented a predator and prey pursuing environment as a test bed for our evolving agents. Using theirs sensorial information and an evolutionary based behaviour decision contr...
متن کاملRobust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length
This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2016